Effect of Carbon Isotope Abundance on Thermal Conductivity and Raman Scattering of Single-Walled Carbon Nanotubes

نویسندگان

  • Shigeo MARUYAMA
  • Yuhei MIYAUCHI
  • Yuki TANIGUCHI
چکیده

We have been studying the heat conduction characteristics along a single-walled carbon nanotube (SWNT) by the molecular dynamics method [1-3] with the simplified form [4] of TersoffBrenner bond order potential [5]. Our preliminary results showed that thermal conductivity was strongly dependent on the nanotube length for realistic length scale for device applications [2, 3]. Furthermore, we have reported the direct calculation of phonon dispersion relations and phonon density of states from molecular dynamics trajectories [2, 3]. The calculated thermal conductivity for a finite length nanotube was not as high as the previously reported result that it might be as high as 6600 W/mK at 300 K [6]. However, the thermal conductivity was much higher than high-thermal conductivity metals. In this study the carbon isotope effect on heat conduction and on Raman scattering are investigated. It is well-known that the inclusion of only 1% of C natural isotope dramatically reduces the thermal conductivity of isotopically pure diamond [7]. However, the previous molecular dynamics result has concluded that the isotope effect was negligible for carbon nanotubes [6]. In order to clarify this point, thermal conductivity of nanotube with randomly distributed C with various ratios was calculated. A preliminary result showed that the dependency of thermal conductivity on isotope ratio was well explained with a simple phonon scattering model. In addition to the molecular dynamics simulations, SWNTs with various amount of C abundance were generated by the alcohol catalytic CVD technique [8, 9] from 1-C and 1,2-C2 ethanol. The Raman scattering of those SWNTs shows a simple shift of Raman scatting frequency for C SWNTs and a complicated broadening for C and C mixture case. Those features are compared with phonon density of states calculated with molecular dynamics method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study on the Thermal Conductivity of Carbon Nanotubes/Oil (TECHNICAL NOTE)

[if gte mso 9]> In the present work, the thermal conductivity coefficients of nanoparticle-oil suspensions for two types of carbon nanotubes, single-walled (SWNTs) and multi-walled (MWNTs) carbon nanotubes at 0.1, 0.2 and 0.3 wt.% were measured by a modified transient hot wire method (KD2-pro thermal property meter). Results showed that the thermal conductivity of suspension containing single-...

متن کامل

単層カーボンナノチューブの熱物性 Thermal Properties of Single - Walled Carbon Nanotubes ○

Single-walled carbon nanotubes (SWNTs) are expected to be the most exciting material in the nanotechnology. In addition to the outstanding electronic, optical and mechanical properties, thermal properties of SWNTs are quite unique with the high thermal conductivity along the tube axis. The molecular dynamics studies of thermal conductivity of a nanotube and thermal conductance between a nanotub...

متن کامل

Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach

The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...

متن کامل

On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method

In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surroun...

متن کامل

Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties

The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003